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Abstract

Several of the commonly used expressions giving reaction rates for model chemical reactions, though accurate for very
high activation energies (i.e. Ea� kBT), are inaccurate for more typical reaction conditions. In this paper we provide the
complete and accurate rate expressions for model reactions having cross-sections dependent on translational, line-of-cen-
ters translational, and internal energies as well as on combinations thereof. Included are rate expressions for models giving
Arrhenius-like temperature dependencies.

Tests of several of the models and their corresponding cross-section expressions were made using Bird’s direct simula-
tion Monte Carlo method. These were successful in reproducing the experimentally determined rates over the full range of
temperatures for the representative reactions: HF + H ? H2 + F, CO + OH ? CO2 + H, H2 + O ? OH + H and
H2 + Cl ? HCl + H.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

In the 1920s Lindemann [1], Christiansen [2], Hinshelwood [3], Fowler [4] and others [5–8] used kinetic the-
ory and statistical mechanics to develop expressions for predicting the rates of chemical reaction for a number
of model systems. These included expressions for reactions of species in the gas phase in bimolecular encoun-
ters with sufficient energy for reaction available as relative translational energy Erel, translational energy along
the line-of-centers at impact Ecc and internal energy Ei associated with the number of internal degrees of free-
dom of the colliding species. Most textbooks of chemical kinetics include some of the expressions. The detailed
information required for use of these expressions is available from modern experimental measurements and
theoretical predictions for an increasing number of reactions.
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In investigations of chemical reactions using Bird’s direct simulation Monte Carlo (DSMC) method [9,10]
we have found that the typical rate expressions for model systems found in the kinetics literature are often
inadequate.

The expression for the rate constant k of a bimolecular reaction is most often given in the form [1–8]
k ¼ 1
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where sn is the number of square terms representing the available internal energy of molecule n, Ea is the acti-
vation energy, kB is the Boltzmann constant, T is the temperature, l is the reduced mass of the colliding pair
and r is a fixed cross-section. The rate expression for a model reaction containing a total of four square terms
in the energy representing two rotational degrees of freedom and one vibrational degree of freedom, and reac-
tion occurring with energy Erel and Ei exceeding an amount Ea is commonly written with the omission of sev-
eral terms, noting the restriction Ea� kBT, as
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The complete rate expression containing all terms is written as
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For a typical reaction with Ea/kBT = 10, the omission of the terms of lower powers introduces an error
which is 27% of the correct value for this model.

The complete expressions and their derivations for many of the most useful models are scattered through-
out the literature of chemical kinetics and in many cases are simply not to be found. In this article we assemble
the full expressions along with their derivations, adding new derivations as required, all in a consistent man-
ner. We explore the effectiveness of each of these models in DSMC calculations for four representative
reactions:
HFþH! H2 þ F;

COþOH! CO2 þH;

H2 þO! OHþH;

H2 þ Cl! HClþH:
The models treated include those with energy requirements based on Erel, Ecc, Ei and their combinations as
well as models giving overall rate expressions having Arrhenius or Arrhenius-like forms kðT Þ ¼ AT ge�Ea=kBT .

Direct simulation Monte Carlo is a stochastic method designed for nonequilibrium flows, and it is very
effective at moderate to high Knudsen numbers. DSMC is also valid at low Knudsen numbers and has been
shown to converge to the Boltzmann equation in the limit of small cell size and time step [11], but compu-
tational requirements become excessive and the method is impractical for very low Knudsen numbers. Orig-
inally developed for gas dynamics simulations, the DSMC method has been extended to include chemical
reactions [10]. Recent applications include complete simulations of the coupled chemical kinetics and gas
dynamics of detonations [12,13]. The DSMC program developed for the simulations reported here employs
classical (i.e. continuous) distributions of internal energies to represent the rotational and vibrational
motions for molecules having internal degrees of freedom. Energy exchanges are treated with the Borg-
nakke–Larsen phenomenological model for inelastic collisions [14] with modifications described by Bird
to treat only a fraction of the particles as inelastic and to satisfy detailed balancing [10]. Ideally one would
use information on cross-sections related to the rotation–vibration levels of the molecules. However, such
detailed information on cross-sections is seldom available and the levels are often closely spaced, so that
the classical approach is appropriate.
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2. Collision rates, reaction rates and distributions

The collision rate between molecules of type A and type B having Maxwellian velocity distributions in three
dimensions is given by (see Refs. [10,15] and others)
ZAB ¼ nA nB
l

kBT
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where their cross-section rC for collisions is dependent on properties of the colliding molecules, vr is the rel-
ative velocity, l is the reduced mass of the colliding pair, kB is the Boltzmann constant and T is the temper-
ature. Expressed in terms of relative translational energy Erel ¼ 1

2
lv2

rel, Eq. (4) becomes
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For a collision cross-section which has a fixed value rC, the collision rate is
ZAB ¼ nA nB
8kBT
pl
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The expression for the reaction rate is the same as Eq. (5) except that the reaction cross-section rR replaces
rC. We are concerned here with reaction cross-sections which are functions of Erel, Ecc and Ei. Since Ecc is a
function of Erel we can write rR = rR(Erel,Ei) and the reaction rate RAB is given by
RAB ¼ nAnB
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where f ð Ei

kBTÞ is the distribution function for the sum of internal energies Ei, expressed as Ei/kBT. The rate con-
stant k for the reaction of A with B is directly related
k ¼ RAB

nA nB

: ð8Þ
The distribution function f ð Ei

kBTÞ for the sum of internal energies for two colliding molecules having internal
energies available in classical rigid rotations and harmonic vibrations is given in terms of Ei/kBT by (see Refs.
[10,15] and others)
f
Ei

kBT

� �
¼ 1

C s
2

� � Ei

kBT

� �s
2�1

e
� Ei

kBT ; ð9Þ
where s = sA + sB, the sum of the number of classical internal degrees of freedom of the colliding molecules A
and B. The number of degrees of freedom corresponds to the number of square terms in the classical expres-
sion for the internal energies. Each rotational mode contributes one degree of freedom and each vibrational
mode contributes two. The terms sA and sB may be non-integer. If s is an even integer, the gamma function
C s

2

� �
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2
� 1

� �
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3. Simulation details

The direct simulation Monte Carlo method was used to explore the use of the reaction models and confirm
the validity of the rate expressions obtained analytically. In the subsequent sections we derive the rate expres-
sions for these models. Along with them we report comparisons of analytic and DSMC rates over a range of
temperatures for several of the models. The DSMC calculations were made with a 2400-line object-oriented
C++ code. Each simulation was carried out for a simple three-dimensional cell with periodic boundaries
and a cell width of one mean-free-path. The simulations were run for 24 h on AMD Athlon 2200+ processors
with the Free Software Foundation’s GNU compiler and required less than 20 MB of RAM. Each case was
initialized with 10,000 or 20,000 reactant particles and was run for a total of 240,000 time steps with a step size
on the order of 10�12 s with a typical reaction half-life of 20,000 time steps.
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4. Model reactions

A model reaction is specified by a statement of the energy requirements for reaction in the form of the reac-
tion cross-section rR(Erel,Ei). In the simplest cases this is expressed as a requirement that Erel or Ei exceed an
energy minimum Ea, a quantity at least loosely related to the Arrhenius activation energy. In other cases the
requirement may be more complex.

An overall rate expression is obtained by carrying out the integrations indicated in Eq. (7) with insertion of
the appropriate function rR(Erel,Ei). This typically involves transformations and specifying lower limits for
the integrations. Further, the specification of rR for a specific reaction includes a (constant) cross-section
r, normally less than the total collision cross-section rC, allowing for steric and similar effects.

With rC� r the reaction cross-section may be specified independently of rC and properties such as viscos-
ity become independent of the reaction model. In the calculations reported here we have used the hard sphere
model with a fixed cross-section rC. If a different total collision cross-section in used in DSMC calculations
(such as the cross-section for the inverse power potential or the variable hard sphere collision model), the dis-
tribution of energy in collisions will be altered and the reaction rates will be different.

The rate expressions and their derivations for several models are indicated in the following sections. A key
to obtaining relatively simple rate expressions is the use of cross-section expressions with Erel in the denom-
inator to cancel that in the integrand of Eq. (7).

4.1. Translational energy requirement, Erel > Ea

The reaction cross-section is specified as
rR ¼
r if Erel P Ea

0 if Erel < Ea

:

�
ð10Þ
The integral involving Ei in Eq. (7) is separable, equal to unity and may be eliminated. The resulting expres-
sion becomes
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4.2. Line-of-centers translational energy requirement, Ecc > Ea

In the case of collisions of hard spheres the center-to-center translational energy depends on Erel and the
impact parameter. Several approaches may be used in consideration of the mechanics, but the requirement
that Ecc exceed Ea results in the cross-section expression
rR ¼
r 1� Erel�Ea

Erel
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0 if Erel < Ea

:
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The integration within Eq. (7) is straightforward and leads to
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4.3. Internal energy requirement, Ei > Ea

In this case the reaction cross-section is independent of Erel and the requirement is that the sum Ei of ener-
gies for s degrees of freedom exceed Ea. The cross-section is given by
rR ¼
r if Ei P Ea

0 if Ei < Ea

:

�
ð14Þ
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Either Eq. (7) may be used or one may simply multiply the collision rate ZAB of Eq. (6) by the probability
that Ei exceeds Ea obtained from Eq. (9)
Fig. 1.
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where C(j,a) is the incomplete gamma function. The result is
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In the case of s
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Similar reductions occur for other integer values of s
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Series expressions may also be found for s
2
¼ 1

2
; 3

2
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2
; . . .

This model was tested in calculations for the reaction HF + H ? H2 + F for which Cohen and Westberg
[16] measured rates fit by an Arrhenius-like expression k = 2.73 � 10�12T0.6e�32,510/RT (k in cm3 mole-
cule�1 s�1, T in K and Ea in cal/mole) over the range 650–7000 K. The reaction is known to be dependent
on vibrational excitation of the HF species corresponding to two degrees of freedom. A slight adjustment
of the three constants of the experimental rate expression gave a more convenient expression,
k = 6.90 � 10�12T0.5e�33,094/RT, incorporating T0.5 and corresponding to the energy requirement matching
Eq. (14). The values of k were negligibly different from those of the original expression. The DSMC simula-
tions with s = 2 gave excellent agreement with the original rate expression as well as with the revised rate
expression as shown in Fig. 1.
Comparison of rate constants for the reaction HF + H ? H2 + F simulated using the internal energy reaction model [Eq. (14);

a] over a temperature range of 1500–7000 K.



P.D. O’Connor et al. / Journal of Computational Physics 227 (2008) 7664–7673 7669
4.4. Combination of translational and internal energies, Erel + Ei > Ea

In this case reaction occurs for collisions with Etot = Erel + Ei greater than Ea and the cross-section is given
by
rR ¼
r if Etot P Ea

0 if Etot < Ea

:

�
ð19Þ
Using Eq. (9) in Eq. (7), substituting (Etot � Ei) for Erel and integrating over Ei/kBT in the range 0 to
Etot/kBT gives
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With Ea/kBT as the lower limit of integration the rate constant becomes
k ¼ 8kBT
pl

� �1
2

r
C s

2
þ 2; Ea

kBT

� �
C s

2
þ 2

� � : ð21Þ
As before, series expressions may be obtained for integer values of s. For even values of s the expression is
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For odd values of s the series expression is
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where a is Ea/kBT, erfc(a) is the complementary error function 1-erf(a), and Cðnþ 1
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For comparisons we chose the reaction CO + OH ? CO2 + H with rates measured by Boni and Penner

[17] who obtained an Arrhenius rate expression of k = 6.64 � 10�12T0e�8008/RT (k in cm3 molecule�1 s�1, T

in K, and Ea in cal/mole). Using the reaction cross-section specified by Eq. (22) with s = 4, the DSMC sim-
ulations give very good agreement with the rate expression by Boni and Penner as shown Fig. 2. The
CO + OH reaction demonstrates the differences in reaction rates described in the Introduction with Eqs.
(2) and (3). At a temperature of 2000 K (Ea/kBT = 2), Eq. (2) predicts a reaction rate only about 1/5 the cor-
rect value given by Eq. (3).

4.5. Combination of line-of-centers translational and internal energies, Ecc + Ei > Ea

For the requirement that the sum of the line-of-centers energy Ecc and the internal energies Ei exceed Ea the
reaction cross-section is
rR ¼
r if Ecc þ Ei P Ea

0 if Ecc þ Ei < Ea

:

�
ð26Þ



Fig. 2. Comparison of rate constants for the reaction CO + OH ? CO2 + H simulated using the combination model [Eq. (19);
Erel + Ei > Ea] over a temperature range of 500–2000 K.
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The rate expression may be derived as in the previous section. An alternative is simply to combine the line-
of-centers result in Eq. (13), substituting Ea � Ei for Ea of Eq. (13), with the distribution for Ei of Eq. (9). The
rate constant is then obtained as
Fig. 3.
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For integer values of s
2

the results may be expressed in series form. For an even number of square terms
ðs

2
¼ 1; 2; 3; . . .Þ the integrations yield
Comparison of rate constants for the reaction H2 + O ? OH + H simulated using the combination model [Eq. (26); Ecc + Ei > Ea]
temperature range of 409–733 K.
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For an odd number of square terms the expression is
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Comparisons with DSMC calculations were made for the combustion reaction H2 + O ? OH + H studied
by Clyne and Thrush [18] who obtained an Arrhenius-like expression of k = 6.0 � 10�13T0.5e�8900/RT (k in
cm3 molecule�1 s�1, T in K, and Ea in cal/mole) over a temperature range of 409–733 K. Using the reaction
model defined by Eq. (26), the DSMC method was capable of accurately simulating the reaction as shown in
Fig. 3 with both Ecc and Ei (s = 4) contributing to the energy available for reaction.
4.6. Models giving Arrhenius-like rate expressions, no internal energy

Since rate expressions derived from experimental measurements are often represented in Arrhenius and
Arrhenius-like forms incorporating T to the power g, k ¼ Ae�Ea=kBT and k ¼ AT ge�Ea=kBT , it is useful to have
models giving matching rate expressions. A number of these have been developed for reactions independent
of internal energies (i.e. without Ei) by LeRoy [19], Menzinger and Wolfgang [20], and others. We consider one
example here.

The cross-section is given by the expression (using rC in this case)
rR ¼
rC
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where c is a constant. Insertion into Eq. (7) leads to
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and after integration gives
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4.7. Models giving Arrhenius-like rate expressions with internal energies, Erel + Ei > Ea

Several models with reaction depending on translational and internal energies and giving
Arrhenius-like rate expressions have been reported [21,22]. These have reaction cross-sections of the form
(using rC)
rR ¼
rCcðEtot � EaÞg�

1
2 Etot�Ea

Etot

� �s
2þ1

0

8<
: ; ð34Þ
if Etot P Ea and Etot < Ea, respectively, where Etot = Erel + Ei. The derivation is the same as that giving Eq.
(21). With rR above substituted in Eq. (20) and specification of Ea/kBT as the lower limit of integration
Eq. (20) becomes



Fig. 4. Comparison of rate constants for the reaction H2 + Cl ? HCl + H simulated using the Arrhenius reaction model [Eq. (34);
Erel + Ei > Ea] over a temperature range of 296–3000 K.
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The integration gives
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For this model the reaction cross-section rR given by Eq. (34) has the possibility of increasing beyond the
collision cross-section rC for large values of Etot. Since this may be unrealistic, care must be taken in choosing
the values of rC and c, such that c is sufficiently low to avoid the problem. The cross-section of Eq. (34) was
used in DSMC calculations for the reaction H2 + Cl ? HCl + H for which Kumaran, Lim, and Michael [23]
found the Arrhenius-like expression k = 4.78 � 10�16T1.58e�3198/RT (k in cm3 molecule�1 s�1, T in K, and Ea in
cal/mole) for a temperature range of 296–3000 K. The calculations were carried out with s = 4,
rC = 1.099 � 10�15 cm2, and Ea = 3.198 kcal/mole. As shown in Fig. 4, the reaction rates were accurately sim-
ulated using the indicated cross-section expression.

5. Discussion

The expressions listed and their corresponding models offer a variety of possibilities for fitting to experi-
mental measurements of reaction rate. They provide the connections between reaction rates and the cross-sec-
tions needed in DSMC calculations. The complete rate expressions presented here give better fits with
experimental data than the approximate expressions, and they are necessary for an accurate determination
of cross-sections for use in DSMC calculations.

The complete expressions can and should be used in both Navier–Stokes and related continuum codes as
well as in developing DSMC codes. The Navier–Stokes equations, however, are only valid for flows near
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equilibrium and give only approximate solutions to most chemically reacting flows. Direct simulation Monte
Carlo calculations, which are applicable to nonequilibrium flows, can, in turn, provide convenient standards
for checking such calculations.
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